STAT 2593
 Lecture 010 - Random Variables

Dylan Spicker

Random Variables

1. Understand the concept of a random variable, intuitively and mathematically.
2. Differentiate discrete and continuous random variables.

SUN	MON	TUE	WED	THU	FRI	SAT
68	74	83	75	82	81	90
$\stackrel{0}{\rightleftharpoons}$		7	?		$\rightarrow 4$	
WINDY	SUNNY	thaverstoms MTIFATREON	MOSTLY CLOUOY	partiv clouoy	RAIN	SUNNY

Random Variables

- Often, when we perform an experiment, we wish to summarize the result numerically.

Random Variables

- Often, when we perform an experiment, we wish to summarize the result numerically.
- A random variable is a mathematical function which takes as input the result of an experiment, and outputs some real number.

Random Variables

- Often, when we perform an experiment, we wish to summarize the result numerically.
- A random variable is a mathematical function which takes as input the result of an experiment, and outputs some real number.
- Importantly, random variables take real values, which are dictated by chance.

Random Variables

- Often, when we perform an experiment, we wish to summarize the result numerically.
- A random variable is a mathematical function which takes as input the result of an experiment, and outputs some real number.
- Importantly, random variables take real values, which are dictated by chance.
- E.g., the number of twos in five rolls of a die, the sum of two dice, the number of days of rain, the yield of a batch of chemicals, etc.

Random Variables

- Often, when we perform an experiment, we wish to summarize the result numerically.
- A random variable is a mathematical function which takes as input the result of an experiment, and outputs some real number.
- Importantly, random variables take real values, which are dictated by chance.
- E.g., the number of twos in five rolls of a die, the sum of two dice, the number of days of rain, the yield of a batch of chemicals, etc.
- Typically, we denote random variable by capital letters X, and specific realizations as lower case x

Random Variables

- Often, when we perform an experiment, we wish to summarize the result numerically.
- A random variable is a mathematical function which takes as input the result of an experiment, and outputs some real number.
- Importantly, random variables take real values, which are dictated by chance.
- E.g., the number of twos in five rolls of a die, the sum of two dice, the number of days of rain, the yield of a batch of chemicals, etc.
- Typically, we denote random variable by capital letters X, and specific realizations as lower case x
- Sometimes make explicit the functional form, with $X(\omega)=x$ when ω occurs during the experiment.

Random Variables

- Intuitively, a random variable is a mathematical variable whose outcome depends on chance.

Random Variables

- Intuitively, a random variable is a mathematical variable whose outcome depends on chance.
- It is generally more convenient to think of random variables which summarize experiments, than the experiments themselves.

Random Variables

- Intuitively, a random variable is a mathematical variable whose outcome depends on chance.
- It is generally more convenient to think of random variables which summarize experiments, than the experiments themselves.
- In probability and statistics you will effectively only be working with random variables.

Example

Discrete and Continuous Random Variables

- If a random variable takes on only a countable number of values (normally the integers), we say it is discrete

Discrete and Continuous Random Variables

- If a random variable takes on only a countable number of values (normally the integers), we say it is discrete
- E.g., number of siblings, age in years, percentage grade in a course

Discrete and Continuous Random Variables

- If a random variable takes on only a countable number of values (normally the integers), we say it is discrete
- E.g., number of siblings, age in years, percentage grade in a course
- If a random variable takes on an uncountable number of values, we say it is continuous

Discrete and Continuous Random Variables

- If a random variable takes on only a countable number of values (normally the integers), we say it is discrete
- E.g., number of siblings, age in years, percentage grade in a course
- If a random variable takes on an uncountable number of values, we say it is continuous
- In the real world, most things are not continuous; however, it is a useful abstraction.

Discrete and Continuous Random Variables

- If a random variable takes on only a countable number of values (normally the integers), we say it is discrete
- E.g., number of siblings, age in years, percentage grade in a course
- If a random variable takes on an uncountable number of values, we say it is continuous
- In the real world, most things are not continuous; however, it is a useful abstraction.
- E.g., height, weight, timings

Summary

- Random variables are mathematical functions that summarize experiments numerically.
- Intuitively, random variables are variables whose value depends on chance.
- Can differentiate between discrete and continuous random variables.

